Revealing and Constraining Cosmic Winds in Interacting Galaxies

Jenna Harvey (JMU), Anca Constantin (JMU), Shobita Satyapal (GMU), Barry Rothberg (LBTO, GMU)

Abstract: Identifying dual accreting supermassive black holes (SMBHs)

Interacting galaxies are abundant in the universe and are believed to play an essential role in the evolution and formation of galaxies by enabling gas inflows towards the central region of galaxies. Accretion of matter onto the central supermassive black holes, which are observed as Active Galactic Nuclei (AGN), is potentially triggered by these galaxy interactions. Although it is expected that dual AGN systems are ubiquitous, only a handful of dual AGN systems have been confirmed observationally and remain extremely rare despite decades of searching. Optical detection of merger-induced dual AGN is vulnerable to dust obscuration or contamination of the nuclear emission by the host galaxy, however longer wavelength observations (e.g. near-IR) overcome this inconvenience. We present here measurements of gas kinematics in galaxy nuclei of fifteen interacting systems based on data obtained with the Large Binocular Telescope Near-Infrared Utility with Camera and Integral Field Unit for Extragalactic Research. We reveal new evidence for Doppler broadening of hydrogen emission lines (e.g. near-IR) which are the staple of ionization by accretion onto a supermassive black hole. Interestingly all these components are found to be blue shifted relative to the systemic velocity of their hosts, suggesting the presence of strong cosmic outflows caused by AGN activity.

Sample Selection

- Galaxy Zoo project (Lintott et al. 2008): Citizen scientists classified a sample of ~700,000 galaxies and identified morphological signs of interactions and labeled these galaxies as "mergers".
- Weighted-merger-vote-fraction, f_w: Used to examine those galaxies identified as interacting by participants, with galaxies having a value of f_w > 0.7 being a high probability of being an interacting galaxy pair. Only ~1400 galaxies met this criterion.
- WISE color cut selections (Satyapal et al. 2014): Selected only galaxies with mid-infrared signatures indicative of AGNs (W1-W2 > 0.5 color cut; Stern et al. 2012; Assaf et al. 2013). This narrowed our sample down to ~120.
- Include only interacting galaxies with at least two distinct nuclei separated by <10 kpc. This left us with ~90 galaxies.
- Follow up with Chandra X-ray Observatory of the fifteen brightest (Satyapal et al. 2017; Pfeifle et al. 2019).
- We present here analysis of near-IR spectroscopy of all the Chandra detections.

Illustration of an AGN

SDSS images show that these objects are highly disturbed systems with only one system, Mrk 463, previously identified as a dual AGN (Bianchi et al. 2008).

Results

Modeling the near-IR spectra of all interacting galaxies reveals the presence of broad hydrogen emission lines (Pa) of widths > 2400 km/s, which are the staple of ionization by accretion onto a supermassive black hole. Interestingly all these components are found to be blue shifted relative to the systemic velocity of their hosts, suggesting the presence of strong cosmic outflows caused by AGN activity.

Future Work

Pursue other AGN diagnostics for the galaxies that do not display broad emission components, to include:

- Near-IR line ratio diagnostic diagrams using Hı(0-51)/Br and [Fe II] 1.257 µm/Fαβ which are useful tools for separating emission-line objects by their nuclear activity in the near-infrared (Larkin et al. 1998; Rodriguez-Ardila et al. 2005; Riffel et al. 2013).


Acknowledgements: This work has been supported by the National Science Foundation under Grant No. AST 1814594, the 4-VA Collaborative at James Madison University, and JMU’s Physics and Astronomy Department.