THE PHYSICS OF MEGAMASERS

MASER – Microwaves Amplified by Stimulated Emission of Radiation

Megamasers – 10^6 times more luminous than typical galactic masers

Optical image of NGC4258
Megamasers in a disk-like configuration:

1. **Measure direct distances** to their host galaxies
 - Constrain geometry of the universe
 - Independent constraint to the age of the universe
 - Better understand nature of dark energy

2. **Measure the masses of the central supermassive black hole**
To find more water megamaser disks, we must know how to search for them!

- ~3% of all galaxies host maser emission
- ~20% of galaxies that host megamaser emission in a disk-like configuration
- Previous searches: no systematic analysis of properties of galaxies with maser emission and those without
Systematic search to identify galaxy traits connected to the megamaser disk phenomenon

How?

- Collect fluxes from public databases
- Build Spectral Energy Distributions (SEDs) = total flux emitted across the electromagnetic spectrum
- Quantify the degree to which various energetic components contribute to the total galaxy light
- Find links to megamaser emission to design more efficient maser survey selection methods

(Hickox & Alexander 2018)
WISE: all-sky survey with the best sensitivities in mid-IR wavelengths (W1=3.4μm, W2=4.6μm, W3=12μm, W4= 22μm)

Cross-match positions of 46 H₂O megamaser disks
- Infrared Processing and Analysis Center (IPAC) table
- Input: count, galaxy name, right ascension, declination

Search parameters
- Test a range of cone search radii to match the angular resolution of WISE filters
<table>
<thead>
<tr>
<th>cntn_01</th>
<th>dist_x</th>
<th>pang_x</th>
<th>mcnum0_1</th>
<th>name_01</th>
<th>ra_01</th>
<th>dec_01</th>
<th>ra</th>
<th>dec</th>
<th>w1mpro</th>
<th>w1sigmpro</th>
<th>w1snr</th>
<th>w2mpro</th>
<th>w2sigmpro</th>
<th>w2snr</th>
<th>w3mpro</th>
<th>w3sigmpro</th>
<th>w3snr</th>
<th>w4mpro</th>
<th>w4sigmpro</th>
<th>w4snr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33626</td>
<td>-53.28569</td>
<td>13</td>
<td>2MASSJ0194510-0333292</td>
<td></td>
<td>17.43792 -3.542444</td>
<td>17.43784 -3.542388</td>
<td>11.805</td>
<td>0.023</td>
<td>47.1</td>
<td>10.105</td>
<td>0.020</td>
<td>55.3</td>
<td>5.966</td>
<td>0.014</td>
<td>75.7</td>
<td>3.007</td>
<td>0.019</td>
<td>58.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.139922</td>
<td>-99.95006</td>
<td>16</td>
<td>2MASSJ0210613-0417564</td>
<td></td>
<td>21.50692 -2.498994</td>
<td>21.50692 -2.498951</td>
<td>11.999</td>
<td>0.021</td>
<td>46.9</td>
<td>11.527</td>
<td>0.021</td>
<td>50.8</td>
<td>8.562</td>
<td>0.027</td>
<td>39.9</td>
<td>6.026</td>
<td>0.049</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57568</td>
<td>127.4533</td>
<td>18</td>
<td>NGC591</td>
<td></td>
<td>23.38</td>
<td>35.6683</td>
<td>23.38016</td>
<td>35.66604</td>
<td>10.685</td>
<td>0.020</td>
<td>44.8</td>
<td>10.196</td>
<td>0.020</td>
<td>54.9</td>
<td>6.327</td>
<td>0.014</td>
<td>76.3</td>
<td>4.313</td>
<td>0.020</td>
<td>54.7</td>
</tr>
<tr>
<td>0.204702</td>
<td>140.9103</td>
<td>17</td>
<td>MRO920</td>
<td></td>
<td>20.5959</td>
<td>27.0824</td>
<td>20.5929</td>
<td>27.0824</td>
<td>11.004</td>
<td>0.029</td>
<td>46.7</td>
<td>11.537</td>
<td>0.021</td>
<td>66.7</td>
<td>2.403</td>
<td>0.031</td>
<td>59.5</td>
<td>5.744</td>
<td>0.043</td>
<td>25.2</td>
</tr>
<tr>
<td>0.194918</td>
<td>-148.8522</td>
<td>24</td>
<td>NGC1068</td>
<td></td>
<td>60.95980 0.133333</td>
<td>60.95980 0.000785</td>
<td>14.349</td>
<td>0.028</td>
<td>39.6</td>
<td>14.015</td>
<td>0.041</td>
<td>26.6</td>
<td>2.169</td>
<td>0.030</td>
<td>35.9</td>
<td>5.743</td>
<td>0.043</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23165</td>
<td>-152.3522</td>
<td>27</td>
<td>Mrk1066</td>
<td></td>
<td>44.99417 36.82056</td>
<td>44.99417 36.82056</td>
<td>9.617</td>
<td>0.020</td>
<td>47.1</td>
<td>8.811</td>
<td>0.019</td>
<td>56.1</td>
<td>4.746</td>
<td>0.016</td>
<td>65.8</td>
<td>1.655</td>
<td>0.016</td>
<td>58.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.401233</td>
<td>89.72757</td>
<td>29</td>
<td>NGC2974</td>
<td></td>
<td>45.8566 0.042222</td>
<td>45.93531 0.042217</td>
<td>17.807</td>
<td>0.017</td>
<td>5.8</td>
<td>17.466</td>
<td>null</td>
<td>0.016</td>
<td>12.327</td>
<td>null</td>
<td>0.12</td>
<td>9.219</td>
<td>null</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.258161</td>
<td>-130.1279</td>
<td>39</td>
<td>NGC4594</td>
<td></td>
<td>20.56</td>
<td>38.8579</td>
<td>20.56</td>
<td>38.8579</td>
<td>12.929</td>
<td>0.020</td>
<td>50.6</td>
<td>8.587</td>
<td>0.019</td>
<td>54.5</td>
<td>3.037</td>
<td>0.013</td>
<td>85.2</td>
<td>2.392</td>
<td>0.018</td>
<td>61.1</td>
</tr>
<tr>
<td>0.500144</td>
<td>-27.72480</td>
<td>31</td>
<td>NGC1386</td>
<td></td>
<td>54.19333 36.99066</td>
<td>54.19333 36.99066</td>
<td>8.834</td>
<td>0.016</td>
<td>49.2</td>
<td>8.088</td>
<td>0.016</td>
<td>54.1</td>
<td>4.432</td>
<td>0.017</td>
<td>74.9</td>
<td>2.046</td>
<td>0.017</td>
<td>64.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS OF CROSS-MATCHING
THE NATURE OF DUPLICATES

- Cone–search radius \(r \) = 15 arcseconds
- Both WISE detections are included
- SQL query to select smallest separation to the input source
THE MYSTERY OF NGC1068

- $\Delta s = 14.92$ arcseconds
- Diameter = 170,000 light years

WISE Image Search: mid – IR detection encompasses the Δs
SPECTRAL ENERGY DISTRIBUTIONS

NGC4258

\[\nu F_\nu \text{ (jyHz)} \]

\[\nu \text{ (Hz)} \]

\[\nu (\text{Hz}) \]

\[3 \mu \text{m} \]

3 m 3 cm 0.3 mm 3 \mu m 30 nm 3 \AA

Radio Far-IR Near-IR Optical Soft X-ray

Hard X-ray

\[10^5 \quad 10^7 \quad 10^9 \quad 10^{11} \quad 10^{13} \quad 10^{15} \quad 10^{17} \]

\[10^8 \quad 10^{10} \quad 10^{12} \quad 10^{14} \quad 10^{16} \quad 10^{18} \quad 10^{20} \]
IN THE FUTURE...

- Compare the optical and mid-IR images for NGC1068
- We will be adding the mid-IR data to the SEDs
- Proceed with SED fitting to quantify the contribution of AGN compared to stellar light and other energetic phenomena in these galaxies
THANK YOU

Dr. Anca Constantin

4-VA Collaborative at James Madison University

National Science Foundation NSF:AST #1814594

This research has made use of the NASA/IPAC Extragalactic Database which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration