Dr. Giovanetti

Measuring this isn't easy!

The muon, like its lighter sibling the electron, acts like a spinning magnet. The parameter known as "g" indicates how strong the magnet is and the rate of its gyration. The value of g is slightly larger than 2, hence the name of the experiment. This difference from 2 is caused by the presence of virtual particles that appear from the vacuum and then quickly disappear into it again.

G-2 experiment

G-2 Experiment at FermiLab

Muon g-2 (pronounced gee minus two) will use Fermilab's powerful accelerators to explore the interactions of short-lived particles known as muons with a strong magnetic field in "empty" space. Scientists know that even in a vacuum, space is never empty. Instead, it is filled with an invisible sea of virtual particles that—in accordance with the laws of quantum physics—pop in and out of existence for incredibly short moments of time. Scientists can test the presence and nature of these virtual particles with particle beams traveling in a magnetic field.

For more information, visit their website!

Back to Research