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Motivation

A future textbook problem

Given a perturbative heterotic string background with d =4, N =1
super-Poincaré invariance, determine

© moduli space & massless spectrum;
@ Yukawa coupling dependence on moduli fields;
© the singular locus of CFT.

Extra credit

Apply your results to
@ issues in moduli stabilization;

@ non-perturbative effects in heterotic string theory;
@ quantum geometry.
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Motivation

At present, difficult even with “textbook” starting point:
o Calabi-Yau three-fold M, a hypersurface in a toric variety V;
@ standard embedding, i.e. holomorphic bundle £ = Ty,.

Difficulty: bundle deformations and quantum corrections
Some special cases:

@ special points in moduli space admit exact (0,2) SCFT description;
o £ =Ty = (2,2) world-sheet SUSY & mirror symmetry;

@ If (2,2) theory admits gauged linear sigma model description, can
study the (0,2) GLSM subspace of deformations.
A guiding question:
how does mirror symmetry extend to (0,2) GLSM deformations?
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@ (0,2) deformations that are not lifted by instantons.
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Results from the (0,2) GLSM moduli space

@ (0,2) deformations that are not lifted by instantons.
[Silverstein + Witten 1995, Berglund et al 1995, Basu + Sethi 2003, Beasley + Witten 2003]
@ Yukawa couplings
> topological heterotic rings [Adams, Basu+Sethi 2003, Adams, Distler + Ernebjerg 2005]
» via A/2 and B/2 half-twisted theories
[Katz+Sharpe 2004, Guffin+ Katz 2007, McOrist + IVM, 2007, 2008]
© singular loci in moduli space [mcorist + VM 2008, IVM + Plesser 2010]
» points where SCFT expected to be singular
> interpolate between (2,2) singular loci and large radius bundle
singularities
© conjecture for a (0,2) MIrror Map [IVM + Plesser 2010]

» suggested by form of algebraic coordinates
» (M, E) & (M°,&°)
» a check: map exchanges singular loci

1.V. Melnikov (AEIl) 4/1



The GLSM: a d = 2 (2,2) SUSY gauge theory wien 193

@ gauge group G = U(1)" x finite abelian group
@ charged chiral matter multiplets 2y, Z,, p=1,...,n
o charges QF, Q;, with QF = —>_ Q7
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The GLSM: a d = 2 (2,2) SUSY gauge theory witen 1003

@ gauge group G = U(1)" x finite abelian group
@ charged chiral matter multiplets 2y, Z,, p=1,...,n
o charges QF, Q;, with QF = —>_ Q7

holomorphic parameters:
o Fl+6-angle terms in twisted superpotential T, = e 277" %"

e coefficients A, in chiral superpotential W(Z) = ZyF(2),

u .

Z H Pmp+1 0 if m=0,
F(Z) = A Z,™ : P =
) m=0 K P ’ " {l_lmp otherwise.
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The GLSM: a d = 2 (2,2) SUSY gauge theory witen 1003
@ gauge group G = U(1)" x finite abelian group

@ charged chiral matter multiplets 2y, Z,, p=1,...,n

o charges QF, Q;, with QF = —>_ Q7

holomorphic parameters:
o Fl+6-angle terms in twisted superpotential T, = e 277" %"
e coefficients A, in chiral superpotential W(Z) = ZyF(2),
0 if m=0,

u
Pmp+1
F(z)=) A Z,m T P, =
& ,,2::0 ml;[ Y " {I'Imp otherwise.

Q;, Mm, determined by combinatorics of a reflexive polytope:
@ [1y,: rank d = n — r integral u x n matrix with entries > —1

° {Q;, ., Q) }: integral basis for kernel of M.
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The (2,2) GLSM & geometry

Combinatorics of I, Q; — geometry:

@ Z, are projective coordinates for d-dimensional compact toric variety
V ={C"-A}/Gc;
e M ={F =0} C Vis a Calabi-Yau hypersurface in V.
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The (2,2) GLSM & geometry

Combinatorics of [1,,,, Q;’ — geometry:

@ Z, are projective coordinates for d-dimensional compact toric variety
V ={C"-A}/Gc;
e M ={F =0} C Vis a Calabi-Yau hypersurface in V.

GLSM/geometry connection:

@ can choose T, so that at low energy GLSM reduces to NLSM with
target-space M.

@ just one of the phases of the GLSM.

The GLSM parameters
@ T, : Kahler deformations of V — Kahler deformations of M

@ A, : complex structure deformations of M
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The (2,2) GLSM moduli space
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The (2,2) GLSM moduli space

@ T, : toric Kahler deformations Htlo’rlic(M) C HMY(M)
Toric divisors need not intersect M —> some T, are redundant.
@ Ap @ polynomial c-x structure defs ch;yz’l(M) C HI=21(m)

Redefinitions Z, — U,(Z) act on A, = some A, are redundant.

Pmp+1
Example: Z,— u,Z, = Ay Ay X H up i

p
u

If @,ﬁn span cokernel of I,,,, then 7'3, = H [Aon_l] @ are invariant.

m=1
Additional redefinitions lead to further redundancy in the Tj.

The Mirror Map for toric/polynomial deformations

N,Q; T, Ts ismirrorto N7, Q; Ta, Ta
N — e g
Mcv MecCVve
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Redundant T,, 7}, from polytopes

No additional redundancy iff polytope is reflexively plain. J
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Redundant T, 7'3, from polytopes

No additional redundancy iff polytope is reflexively plain.

@ A polytope is plain iff it has no interior lattice points in any facet.
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Redundant T, 7'3, from polytopes

No additional redundancy iff polytope is reflexively plain. J

@ A polytope is plain iff it has no interior lattice points in any facet.

[ ]
[ ]
/.\. °
/ — oo @
a plain polytope in d =2 with a non-plain dual polytope
@ A polytope is reflexively plain iff it and its dual are plain.

» d =2 : there is a unique reflexively plain reflexive polytope:
*—O *—0O

./. l l .\.

— Ned

» d =4 : there are 6,677,743 reflexively plain pairs and 5,518 self-dual
plain polytopes.
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Redundant T, 7'3, from polytopes

No additional redundancy iff polytope is reflexively plain.

@ A polytope is plain iff it has no interior lattice points in any facet.

— oo @
a plain polytope in d =2 with a non-plain dual polytope

@ A polytope is reflexively plain iff it and its dual are plain.

@ Redundant T,, :,\_g correspond to interior lattice points of facets;
@ the redundancy is mirror symmetric;

@ (0,2) deformations take simple form in reflexively plain models.
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(0,2) GLSM deformations

@ (2,2) vectors — (0,2) vectors + (0,2) bosonic chiral multiplets S,
o (2,2) chiral multiplets — (0,2) multiplets: Z{*? s (Z,,T7)

» Z, : (0,2) bosonic chiral multiplets

» [?: (0,2) Fermi multiplets Dre =3%"_ S.E**(Z)
@ (2,2) superpotential — (0,2) superpotential

W(Z) = TOF(2) + > T°ZyJy(2)
P
@ supersymmetry constraint:

70y E“(Z)J,(Z2) + E*°F(Z) =0

p

oF

e (2,2) locus: EP = ; SaQZ,, Jy= 57
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COUﬂtlng (0,2) GLSM defOrmationS [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.
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e Parameters: T,, Ap and coefficients in E*?, J,
#(E*?) = #(monomials of same charge as Z,)
#(J,) = #(monomials of same charge as OF /0Z,)

@ SUSY constraint eliminates some of these

@ As do redefinitions of Z,,I” and S,

@ Result: N(M)—the number of GLSM deformations

@ Check: N(M) matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M° ?
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COU ntlng (0,2) GLSM defOI’m atlonS [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.
e Parameters: T,, Ap and coefficients in E*?, J,
#(E*?) = #(monomials of same charge as Z,)
#(J,) = #(monomials of same charge as OF /0Z,)
@ SUSY constraint eliminates some of these
@ As do redefinitions of Z,,I'” and S,
@ Result: N(M)—the number of GLSM deformations
°

Check: N(M) matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M° ?
N(M) £ N(M°)

In general, no. If model is reflexively plain, yes!
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Invariant parameters

°o K= [AnAgt] m complex structure
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Deformations of reflexively plain GLSMs

u
Write ZyJy = 3 Loy [[Z0™*Y, Linp =0 if Ppp =1

m=0 A

Invariant parameters

o Ky= [AnAgt] m complex structure
m=1
o Ky =T, [ [LopAst] < Kahler
p=1
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O B = —1form#0 bundle
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Deformations of reflexively plain GLSMs

u
Write ZyJy = 3 Loy [[Z0™*Y, Linp =0 if Ppp =1
m=0 A

Invariant parameters

o Ky= [AnAgt] m complex structure
m=1
o Ky =T, [ [LopAst] < Kahler
p=1
° B, EAO TP _1form#0 bundle
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Deformations of reflexively plain GLSMs

u
Write ZyJy = 3 Loy [[Z0™*Y, Linp =0 if Ppp =1

m=0 A
Invariant parameters
—~ Y 02
°o K= [AnAgt] ™ complex structure
m=1
n a
o Ky =T, [ [LopAst] < Kahler
p=1
_ Aolmp
O B = —1form#0 bundle
AmLo, )
By is rank d and satisfies B, = —1 whenever [l,, = —1.

Remaining parameters fixed by SUSY constraint up to redefinitions
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N, Q: K, Ks, B is mirrorto N7, Q: Ky, Ky, BT .
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(M,E) (Me ,£°)

A Test: A/2 and B/2 singular loci

o A/2-twisted correlators diverge when an S, develops a flat direction;

e B/2-twisted correlators diverge when Zy develops a flat direction;

@ these singular loci are exchanged by the mirror map.
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Results

@ GLSM offers hands-on description of a subclass of bundle
deformations.

@ In the reflexively plain class of models, there is a simple mirror map.

@ More generally, map yields isomorphism of subfamilies of (0,2)
GLSMs with only some of the E-deformations turned on.

Questions
@ Are A/2 and B/2 correlators exchanged by the mirror map?
@ How to incorporate additional E-deformations?
@ What is the fate of the non-GLSM bundle deformations?
@ What is the space-time physics of the singularities?
e Can the ideas be generalized to (0,2) models without (2,2) locus?
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