• Atomic Structure
Nucleus

– Nucleus has protons and neutrons.
– Protons are + charges
– Neutrons have no charge

– 2000 times more massive > electron
• Why is an atom electrically neutral?
Rutherford’s alpha particle scattering Scattering.

- What is alpha particle?
 - Bare nucleus of He
 - Has 2 protons and 2 neutrons
- Measurement of scattering angle
Scattering of Alpha Particles
• The Quantum Concept
• Light Photons \rightarrow Quanta
 • $E = hf$
 – where $E =$ energy
 – $h =$ Plank’s constant $= 6.63 \times 10^{-34}$ Js
 – $f =$ frequency
Light from solids, liquids, dense gases

Continuum Spectrum of Colors

Light from gas

Line Spectra
Line Spectrum of Hydrogen

\[\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \]

Rydberg’s Const

\[R = 1.097 \times 10^7 \frac{1}{m} \]

Violet \((n=6) \)

Violet \((n=5) \)

Blue-green \((n=4) \)

Red \((n=3) \)

Ultraviolet series

Visible (Balmer series)

Infrared series
• **Bohr’s Theory**

 – **Allowed Orbitals**
 • An electron can only orbit around an atom in specific orbits

 – **Radiation less Orbits**
 • An electron in an allowed orbit does not emit radiant energy as long as it remains in the orbit.

 – **Quantum Leaps**
 • An electron gains or loses energy only by moving from one allowed orbit to another.
 • The lowest energy state \rightarrow ground state
 • Higher states \rightarrow excited states
Energy of Orbits

\[E_n = \frac{E_L}{n^2} \]

\(E_L \) = Lower energy level of any two electron orbits
\(E_n \) = Higher energy level of any two electron orbits
\(n \) = number of the higher electron orbit

Energy of each orbit is quantized
Energy Level Diagram for Hydrogen Atom

<table>
<thead>
<tr>
<th>n</th>
<th>Energy (J)</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.18×10^{-18}</td>
<td>-13.6</td>
</tr>
<tr>
<td>2</td>
<td>-5.44×10^{-19}</td>
<td>-3.40</td>
</tr>
<tr>
<td>3</td>
<td>-2.42×10^{-19}</td>
<td>-1.51</td>
</tr>
<tr>
<td>4</td>
<td>-1.36×10^{-19}</td>
<td>-0.850</td>
</tr>
<tr>
<td>5</td>
<td>-8.70×10^{-20}</td>
<td>-0.544</td>
</tr>
<tr>
<td>6</td>
<td>-6.05×10^{-20}</td>
<td>-0.377</td>
</tr>
</tbody>
</table>

$1\text{eV} = 1.6 \times 10^{-19} \text{J}$

- Violet ($7.3 \times 10^{14} \text{Hz}$)
- Violet ($6.9 \times 10^{14} \text{Hz}$)
- Blue-green ($6.2 \times 10^{14} \text{Hz}$)
- Red ($4.6 \times 10^{14} \text{Hz}$)
Quantum Jump

\[E_H - E_L = hf \]

- \(E_H \) = frequency
- \(E_L \) = Planck's constant

fff
Fluorescent Bulbs
Calculate the energy for levels $n=2$, $n=4$
Calculate the frequency of the photon emitted when an electron drops from $n = 3$ to the ground state. ($1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$)

$n = 4$

$n = 3$ \hspace{2cm} $E_{n=3} = -1.5 \text{ eV}$

$n = 2$

$n = 1$ \hspace{2cm} $E_{n=1} = -13.6 \text{ eV}$
a)

\[
E_n = \frac{E_L}{n^2}
\]

\[
E_2 = \frac{E_L}{2^2} = -\frac{13.6eV}{4} = -3.4eV
\]

\[
E_2 = -3.4eV \times \left(\frac{1.6 \times 10^{-19} J}{1eV} \right) = -5.44 \times 10^{-19} J
\]

\[
E_4 = \frac{E_L}{4^2} = -\frac{13.6eV}{16} = -0.85eV
\]

\[
E_4 = -0.85eV \times \left(\frac{1.6 \times 10^{-19} J}{1eV} \right) = -1.36 \times 10^{-19} J
\]
b) \[E_H - E_L = hf \]
\[E_3 - E_1 = -1.5eV - (-13.6eV) \]
\[E_3 - E_1 = -1.5eV + 13.6eV \]
\[E_3 - E_1 = 12.1eV = 1.94 \times 10^{-18} J \]
\[E_3 - E_1 = hf \]
\[1.94 \times 10^{-19} J = \left(6.63 \times 10^{-34} J.s\right) \times f \]
\[
\therefore f = \frac{1.94 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = 2.92 \times 10^{15} \text{ Hz} \]