Linear Sigma Models and Heterotic Moduli Spaces

Ilarion V. Melnikov

Albert Einstein Institute
Max Planck Institute for Gravitational Physics
Golm, Germany

based on work with M. Kreuzer, J. McOrist, and M.R. Plesser
Motivation

A future textbook problem

Given a perturbative heterotic string background with $d = 4$, $N = 1$ super-Poincaré invariance, determine

1. moduli space & massless spectrum;
2. Yukawa coupling dependence on moduli fields;
3. the singular locus of CFT.

Extra credit

Apply your results to

- issues in moduli stabilization;
- non-perturbative effects in heterotic string theory;
- quantum geometry.
At present, difficult even with “textbook” starting point:

- Calabi-Yau three-fold \mathcal{M}, a hypersurface in a toric variety \mathcal{V};
- standard embedding, i.e. holomorphic bundle $\mathcal{E} = T_{\mathcal{M}}$.

Difficulty: bundle deformations and quantum corrections

Some special cases:
- special points in moduli space admit exact (0,2) SCFT description;
- $\mathcal{E} = T_{\mathcal{M}} \Rightarrow (2,2)$ world-sheet SUSY & mirror symmetry;
- If (2,2) theory admits gauged linear sigma model description, can study the (0,2) GLSM subspace of deformations.

A guiding question:

how does mirror symmetry extend to (0,2) GLSM deformations?
Motivation

At present, difficult even with “textbook” starting point:
- Calabi-Yau three-fold M, a hypersurface in a toric variety V;
- standard embedding, i.e. holomorphic bundle $\mathcal{E} = T_M$.

Difficulty: bundle deformations and quantum corrections
At present, difficult even with “textbook” starting point:
- Calabi-Yau three-fold M, a hypersurface in a toric variety V;
- standard embedding, i.e. holomorphic bundle $\mathcal{E} = T_M$.

Difficulty: bundle deformations and quantum corrections

Some special cases:
- special points in moduli space admit exact $(0,2)$ SCFT description;
- $\mathcal{E} = T_M \implies (2,2)$ world-sheet SUSY & mirror symmetry;
- If $(2,2)$ theory admits gauged linear sigma model description, can study the $(0,2)$ GLSM subspace of deformations.
Motivation

At present, difficult even with “textbook” starting point:
- Calabi-Yau three-fold M, a hypersurface in a toric variety V;
- standard embedding, i.e. holomorphic bundle $\mathcal{E} = T_M$.

Difficulty: bundle deformations and quantum corrections

Some special cases:
- special points in moduli space admit exact $(0,2)$ SCFT description;
- $\mathcal{E} = T_M \implies (2,2)$ world-sheet SUSY & mirror symmetry;
- If $(2,2)$ theory admits gauged linear sigma model description, can study the $(0,2)$ GLSM subspace of deformations.

A guiding question:

how does mirror symmetry extend to $(0,2)$ GLSM deformations?
Results from the (0,2) GLSM moduli space

- (0,2) deformations that are not lifted by instantons: Silverstein + Witten 1995, Berglund et al 1995, Basu + Sethi 2003, Beasley + Witten 2003
- Singular loci in moduli space: McOrist + IVM 2008, IVM + Plesser 2010
 ▶ points where SCFT expected to be singular
 ▶ interpolate between (2,2) singular loci and large radius bundle singularities
- Conjecture for a (0,2) mirror map: IVM + Plesser 2010
 ▶ suggested by form of algebraic coordinates
 ▶ \((M, E) \leftrightarrow (M^\circ, E^\circ)\)
 ▶ a check: map exchanges singular loci
Results from the (0,2) GLSM moduli space

1 (0,2) deformations that are *not* lifted by instantons.

Results from the (0,2) GLSM moduli space

1. (0,2) deformations that are \textit{not} lifted by instantons.

2. Yukawa couplings
 - via A/2 and B/2 half-twisted theories
Results from the (0,2) GLSM moduli space

1. (0,2) deformations that are not lifted by instantons.

2. Yukawa couplings
 ▶ via A/2 and B/2 half-twisted theories

3. Singular loci in moduli space
 [McOrist + IVM 2008, IVM + Plesser 2010]
 ▶ points where SCFT expected to be singular
 ▶ interpolate between (2,2) singular loci and large radius bundle singularities
Results from the (0,2) GLSM moduli space

1. (0,2) deformations that are *not* lifted by instantons.

2. Yukawa couplings
 - via A/2 and B/2 half-twisted theories

3. singular loci in moduli space [McOrist + IVM 2008, IVM + Plesser 2010]
 - points where SCFT expected to be singular
 - interpolate between (2,2) singular loci and large radius bundle singularities

4. conjecture for a (0,2) mirror map [IVM + Plesser 2010]
 - suggested by form of algebraic coordinates
 - $(M, \mathcal{E}) \leftrightarrow (M^\circ, \mathcal{E}^\circ)$
 - a check: map exchanges singular loci
The GLSM: a $d = 2$ (2,2) SUSY gauge theory

- gauge group $G = U(1)^r \times$ finite abelian group
- charged chiral matter multiplets $Z_0, Z_\rho, \rho = 1, \ldots, n$
- charges Q_0^a, Q_ρ^a, with $Q_0^a = -\sum_\rho Q_\rho^a$
The GLSM: a $d = 2 \ (2,2)$ SUSY gauge theory [Witten 1993]

- gauge group $G = U(1)^r \times$ finite abelian group
- charged chiral matter multiplets $Z_0, Z_\rho, \rho = 1, \ldots, n$
- charges Q_0^a, Q_ρ^a, with $Q_0^a = - \sum_\rho Q_\rho^a$

holomorphic parameters:

- $F\theta+\theta$-angle terms in twisted superpotential $T_a \equiv e^{-2\pi r^a+i\theta^a}$
- coefficients A_m in chiral superpotential $W(Z) = Z_0 F(Z)$,

$$F(Z) = \sum_{m=0}^u A_m \prod_\rho Z_\rho^{P_{m\rho}+1}, \quad P_{m\rho} = \begin{cases} 0 \text{ if } m=0, \\ \Pi_{m\rho} \text{ otherwise.} \end{cases}$$
The GLSM: a \(d = 2 \) (2,2) SUSY gauge theory [Witten 1993]

- gauge group \(G = U(1)^r \times \) finite abelian group
- charged chiral matter multiplets \(Z_0, Z_\rho, \rho = 1, \ldots, n \)
- charges \(Q^a_0, Q^a_\rho \), with \(Q^a_0 = -\sum_\rho Q^a_\rho \)

Holomorphic parameters:

- FI+\(\theta \)-angle terms in twisted superpotential \(T_a \equiv e^{-2\pi r^a + i\theta^a} \)
- coefficients \(A_m \) in chiral superpotential \(W(Z) = Z_0 F(Z) \),

\[
F(Z) = \sum_{m=0}^{u} A_m \prod_\rho Z_\rho^{P_{m\rho}+1}, \quad P_{m\rho} = \begin{cases} 0 & \text{if } m=0, \\ \Pi_{m\rho} & \text{otherwise.} \end{cases}
\]

\(Q^a_\rho, \Pi_{m\rho} \) determined by combinatorics of a reflexive polytope:

- \(\Pi_{m\rho} \): rank \(d = n - r \) integral \(u \times n \) matrix with entries \(\geq -1 \);
- \(\{ Q^1_\rho, \ldots, Q^r_\rho \} \): integral basis for kernel of \(\Pi_{m\rho} \).
The (2,2) GLSM & geometry

Combinatorics of $\Pi_{m\rho}$, $Q^a_{\rho} \rightarrow$ geometry:

- Z_ρ are projective coordinates for d-dimensional compact toric variety
 $V = \{\mathbb{C}^n - \Delta\}/G_{\mathbb{C}}$;
- $M = \{F = 0\} \subset V$ is a Calabi-Yau hypersurface in V.
The (2,2) GLSM & geometry

Combinatorics of Π_{ρ}, $Q^a_\rho \rightarrow$ geometry:

- Z_ρ are projective coordinates for d-dimensional compact toric variety $V = \{(\mathbb{C}^n - \Delta)/G_\mathbb{C} \}$.
- $M = \{ F = 0 \} \subset V$ is a Calabi-Yau hypersurface in V.

GLSM/geometry connection:

- can choose T_a so that at low energy GLSM reduces to NLSM with target-space M.
- just one of the phases of the GLSM.
The (2,2) GLSM & geometry

Combinatorics of $\Pi_{m\rho}$, $Q^a_\rho \rightarrow$ geometry:

- Z_ρ are projective coordinates for d-dimensional compact toric variety $V = \{\mathbb{C}^n - \Delta\}/G_{\mathbb{C}}$;
- $M = \{F = 0\} \subset V$ is a Calabi-Yau hypersurface in V.

GLSM/geometry connection:

- can choose T_a so that at low energy GLSM reduces to NLSM with target-space M.
- just one of the phases of the GLSM.

The GLSM parameters

- T_a : Kähler deformations of $V \rightarrow$ Kähler deformations of M
- A_m : complex structure deformations of M
The (2,2) GLSM moduli space
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations

\[H_{\text{toric}}^{1,1}(M) \subseteq H^{1,1}(M) \]
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations

 Toric divisors need not intersect $M \implies$ some T_a are redundant.

$$H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M)$$
The (2,2) GLSM moduli space

- T_a: toric K"ahler deformations

 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs

\[H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M) \]
\[H^{d-2,1}_{\text{poly}}(M) \subseteq H^{d-2,1}(M) \]
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations \[H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M) \]
 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs \[H^{d-2,1}_{\text{poly}}(M) \subseteq H^{d-2,1}(M) \]
 Redefinitions $Z_\rho \mapsto U_\rho(Z)$ act on $A_m \implies$ some A_m are redundant.
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations

 $H_{toric}^{1,1}(M) \subseteq H^{1,1}(M)$

 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs

 $H_{poly}^{d-2,1}(M) \subseteq H^{d-2,1}(M)$

 Redefinitions $Z_{\rho} \leftrightarrow U_{\rho}(Z)$ act on $A_m \implies$ some A_m are redundant.

 Example: $Z_{\rho} \leftrightarrow u_{\rho}Z_{\rho} \implies A_m \leftrightarrow A_m \times \prod_{\rho} u_{\rho}^{P_{m\rho}+1}$
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations
 \[H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M) \]
 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs
 \[H^{d-2,1}_{\text{poly}}(M) \subseteq H^{d-2,1}(M) \]
 Redefinitions $Z_\rho \mapsto U_\rho(Z)$ act on $A_m \implies$ some A_m are redundant.

Example: $Z_\rho \mapsto u_\rho Z_\rho \implies A_m \mapsto A_m \times \prod_{\rho} u_\rho^{P_{m\rho}+1}$

If \hat{Q}_m span cokernel of $\Pi_{m\rho}$, then $\hat{T}_{\hat{a}} \equiv \prod_{m=1}^{u} \left[A_m A_0^{-1}\right] \hat{Q}_m$ are invariant.
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations
 \[H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M) \]
 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs
 \[H^{d-2,1}_{\text{poly}}(M) \subseteq H^{d-2,1}(M) \]
 Redefinitions $Z_\rho \mapsto U_\rho(Z)$ act on $A_m \implies$ some A_m are redundant.

Example: \[Z_\rho \mapsto u_\rho Z_\rho \implies A_m \mapsto A_m \times \prod_\rho u_\rho^{P_{m\rho}+1} \]

If \hat{Q}_m span cokernel of $\Pi_{m\rho}$, then $\hat{T}_a \equiv \prod_{m=1}^{u} [A_mA_0^{-1}]^{\hat{Q}_m}$ are invariant.

Additional redefinitions lead to further redundancy in the \hat{T}_a.
The (2,2) GLSM moduli space

- T_a: toric Kähler deformations
 $$H^{1,1}_{\text{toric}}(M) \subseteq H^{1,1}(M)$$
 Toric divisors need not intersect $M \implies$ some T_a are redundant.

- A_m: polynomial c-x structure defs
 $$H^{d-2,1}_{\text{poly}}(M) \subseteq H^{d-2,1}(M)$$
 Redefinitions $Z_\rho \mapsto U_\rho(Z)$ act on $A_m \implies$ some A_m are redundant.

Example: $Z_\rho \mapsto u_\rho Z_\rho \implies A_m \mapsto A_m \times \prod_{\rho} u_\rho^{P_{m\rho}+1}$

If \hat{Q}_m span cokernel of $\Pi_{m\rho}$, then $\hat{T}_\hat{a} \equiv \prod_{m=1}^{u} [A_mA_0^{-1}] \hat{Q}_m$ are invariant.

Additional redefinitions lead to further redundancy in the $\hat{T}_\hat{a}$.

The Mirror Map for toric/polynomial deformations

$\Pi, Q; T_a, \hat{T}_\hat{a}$ is mirror to $\Pi^T, \hat{Q}; \hat{T}_\hat{a}, T_a$

$I.V. Melnikov (AEI)$

7 / 1
Redundant $T_a, \hat{T}_\hat{a}$ from polytopes

No additional redundancy iff polytope is reflexively plain.
Redundant $T_a, \hat{T}_{\hat{a}}$ from polytopes

No additional redundancy iff polytope is reflexively plain.

- A polytope is plain iff it has no interior lattice points in any facet.
Redundant $T_a, \hat{T}_{\hat{a}}$ from polytopes

No additional redundancy iff polytope is reflexively plain.

- A polytope is plain iff it has no interior lattice points in any facet.

A plain polytope in $d = 2$
Redundant $T_a, \hat{T}_\hat{a}$ from polytopes

No additional redundancy iff polytope is **reflexively plain**.

- A polytope is **plain** iff it has no interior lattice points in any facet.

![Diagram of a plain polytope in $d=2$ with a non-plain dual polytope](image)
Redundant $T_a, \hat{T}_\hat{a}$ from polytopes

No additional redundancy iff polytope is **reflexively plain**.

- A polytope is **plain** iff it has no interior lattice points in any facet.

A plain polytope in $d = 2$ with a non-plain dual polytope

- A polytope is **reflexively plain** iff it and its dual are plain.
Redundant $T_a, \hat{T}_\hat{a}$ from polytopes

No additional redundancy iff polytope is reflexively plain.

- A polytope is plain iff it has no interior lattice points in any facet.

A plain polytope in $d = 2$ with a non/plain dual polytope

- A polytope is reflexively plain iff it and its dual are plain.
 - $d = 2$: there is a unique reflexively plain reflexive polytope:
No additional redundancy iff polytope is **reflexively plain**.

- A polytope is **plain** iff it has no interior lattice points in any facet.

A plain polytope in \(d = 2\) with a non-plain dual polytope:

- A polytope is **reflexively plain** iff it and its dual are plain.
 - \(d = 2\) : there is a unique reflexively plain reflexive polytope:

 - \(d = 4\) : there are 6,677,743 reflexively plain pairs and 5,518 self-dual plain polytopes.
Redundant T_a, $\hat{T}_{\hat{a}}$ from polytopes

No additional redundancy iff polytope is **reflexively plain**.

- A polytope is **plain** iff it has no interior lattice points in any facet.

 A plain polytope in $d = 2$ with a non-plain dual polytope

- A polytope is **reflexively plain** iff it and its dual are plain.

- Redundant T_a, $\hat{T}_{\hat{a}}$ correspond to interior lattice points of facets;
Redundant T_a, $\hat{T}_{\hat{a}}$ from polytopes

No additional redundancy iff polytope is **reflexively plain**.

- A polytope is **plain** iff it has no interior lattice points in any facet.

\[\text{a plain polytope in } d = 2 \]

- A polytope is **reflexively plain** iff it and its dual are plain.

- Redundant $T_a, \hat{T}_{\hat{a}}$ correspond to interior lattice points of facets;
- the redundancy is mirror symmetric;
Redundant $T_a, \hat{T}_\hat{a}$ from polytopes

No additional redundancy iff polytope is reflexively plain.

- A polytope is plain iff it has no interior lattice points in any facet.

 A plain polytope in $d = 2$ with a non-plain dual polytope

- A polytope is reflexively plain iff it and its dual are plain.

- Redundant $T_a, \hat{T}_\hat{a}$ correspond to interior lattice points of facets;
 the redundancy is mirror symmetric;

- (0,2) deformations take simple form in reflexively plain models.
(0,2) GLSM deformations
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors $+$ (0,2) bosonic chiral multiplets S_α
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors + (0,2) bosonic chiral multiplets S_α
- (2,2) chiral multiplets \rightarrow (0,2) multiplets: $Z^{(2,2)}_\rho \mapsto (Z_\rho, \Gamma^\rho)$
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors + (0,2) bosonic chiral multiplets S_α
- (2,2) chiral multiplets \rightarrow (0,2) multiplets: $Z^{(2,2)}_\rho \mapsto (Z_\rho, \Gamma^\rho)$
 - Z_ρ : (0,2) bosonic chiral multiplets
 - Γ^ρ : (0,2) Fermi multiplets

\[\overline{D}\Gamma^\rho = \sum_\alpha S_\alpha E^{\alpha \rho}(Z) \]
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors + (0,2) bosonic chiral multiplets S_α
- (2,2) chiral multiplets \rightarrow (0,2) multiplets: $Z^{(2,2)}_\rho \mapsto (Z_\rho, \Gamma^\rho)$
 - Z_ρ: (0,2) bosonic chiral multiplets
 - Γ^ρ: (0,2) Fermi multiplets
 - $\overline{D} \Gamma^\rho = \sum_\alpha S_\alpha E^\alpha_\rho(Z)$
- (2,2) superpotential \mapsto (0,2) superpotential

$$W(Z) \mapsto \Gamma^0 F(Z) + \sum_\rho \Gamma^\rho Z_0 J_\rho(Z)$$
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors + (0,2) bosonic chiral multiplets S_α
- (2,2) chiral multiplets \rightarrow (0,2) multiplets: $Z^{(2,2)}_\rho \mapsto (Z_\rho, \Gamma^\rho)$
 - $Z_\rho : (0,2)$ bosonic chiral multiplets
 - $\Gamma^\rho : (0,2)$ Fermi multiplets
 \[\overline{D}\Gamma^\rho = \sum_\alpha S_\alpha E^{\alpha\rho}(Z) \]
- (2,2) superpotential \mapsto (0,2) superpotential
 \[W(Z) \mapsto \Gamma^0 F(Z) + \sum_\rho \Gamma^\rho Z_0 J^\rho(Z) \]
- supersymmetry constraint:
 \[Z_0 \sum_\rho E^{\alpha\rho}(Z) J^\rho(Z) + E^{\alpha0} F(Z) = 0 \]
(0,2) GLSM deformations

- (2,2) vectors \mapsto (0,2) vectors + (0,2) bosonic chiral multiplets S_α
- (2,2) chiral multiplets \mapsto (0,2) multiplets: $Z^{(2,2)}_\rho \mapsto (Z_\rho, \Gamma^\rho)$
 - Z_ρ: (0,2) bosonic chiral multiplets
 - Γ^ρ: (0,2) Fermi multiplets $\bar{D}\Gamma^\rho = \sum_\alpha S_\alpha E^{\alpha\rho}(Z)$
- (2,2) superpotential \mapsto (0,2) superpotential
 \[
 W(Z) \mapsto \Gamma^0 F(Z) + \sum_\rho \Gamma^\rho Z_0 J_\rho(Z)
 \]
- supersymmetry constraint:
 \[
 Z_0 \sum_\rho E^{\alpha\rho}(Z) J_\rho(Z) + E^{\alpha 0} F(Z) = 0
 \]
- (2,2) locus:
 \[
 E^\rho = \sum_\alpha S_\alpha Q_\rho^\alpha Z_\rho, \quad J_\rho = \frac{\partial F}{\partial Z_\rho}
 \]
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_{\rho}$
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_\rho$

 $\#(E^{\alpha\rho}) = \#$(monomials of same charge as Z_ρ)

 $\#(J_\rho) = \#$(monomials of same charge as $\partial F/\partial Z_\rho$)
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_\rho$

 $\#(E^{\alpha\rho}) = \#(\text{monomials of same charge as } Z_\rho)$

 $\#(J_\rho) = \#(\text{monomials of same charge as } \partial F/\partial Z_\rho)$

- SUSY constraint eliminates some of these

Check: $N(M)$ matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M°?

$N(M) = N(M^\circ)$ in general. If model is reflexively plain, yes!
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_\rho$

 $\#(E^{\alpha\rho}) = \#(\text{monomials of same charge as } Z_\rho)$

 $\#(J_\rho) = \#(\text{monomials of same charge as } \partial F/\partial Z_\rho)$

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha \rho}, J_\rho$

 $$\#(E^{\alpha \rho}) = \#(\text{monomials of same charge as } Z_\rho)$$
 $$\#(J_\rho) = \#(\text{monomials of same charge as } \partial F/\partial Z_\rho)$$

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α

- Result: $N(M)$—the number of GLSM deformations

Check: $N(M)$ matches geometric computations in examples.

In general, no. If model is reflexively plain, yes!
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_\rho$

 $\#(E^{\alpha\rho}) = \#(\text{monomials of same charge as } Z_\rho)$

 $\#(J_\rho) = \#(\text{monomials of same charge as } \partial F / \partial Z_\rho)$

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α

- Result: $N(M)$—the number of GLSM deformations

- Check: $N(M)$ matches geometric computations in examples.
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha \rho}, J_\rho$

 \[\#(E^{\alpha \rho}) = \# \text{(monomials of same charge as } Z_\rho) \]

 \[\#(J_\rho) = \# \text{(monomials of same charge as } \partial F / \partial Z_\rho) \]

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α

- Result: $N(M)$—the number of GLSM deformations

- Check: $N(M)$ matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M°?
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha\rho}, J_\rho$

 $\#(E^{\alpha\rho}) = \#($monomials of same charge as $Z_\rho)$

 $\#(J_\rho) = \#($monomials of same charge as $\partial F/\partial Z_\rho)$

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α

- Result: $N(M)$—the number of GLSM deformations

- Check: $N(M)$ matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M°?

$$N(M) \overset{?}{=} N(M^\circ)$$
Counting (0,2) GLSM deformations [Kreuzer, McOrist, IVM + Plesser, 2010]

Combinatorics determines the number of parameters and redefinitions.

- Parameters: T_a, A_m and coefficients in $E^{\alpha \rho}, J_\rho$

 \[
 \#(E^{\alpha \rho}) = \#(\text{monomials of same charge as } Z_\rho)
 \]
 \[
 \#(J_\rho) = \#(\text{monomials of same charge as } \partial F/\partial Z_\rho)
 \]

- SUSY constraint eliminates some of these

- As do redefinitions of Z_ρ, Γ^ρ and S_α

- Result: $N(M)$—the number of GLSM deformations

- Check: $N(M)$ matches geometric computations in examples.

A (0,2) GLSM mirror map for pair M, M°?

$$N(M) \overset{?}{=} N(M^\circ)$$

In general, no. If model is reflexively plain, yes!
Deformations of reflexively plain GLSMs
Deformations of reflexively plain GLSMs

Write $Z_\rho J_\rho = \sum_{m=0}^{u} L_{m\rho} \prod_{\lambda} Z_\lambda^{P_{m\lambda}+1}$, $L_{m\rho} = 0$ if $P_{m\rho} = -1$.
Deformations of reflexively plain GLSMs

Write $Z_\rho J_\rho = \sum_{m=0}^u L_{m\rho} \prod_\lambda Z_\rho^{P_{m\lambda}+1}, \quad L_{m\rho} = 0 \text{ if } P_{m\rho} = -1$

Invariant parameters
Deformations of reflexively plain GLSMs

Write \(Z_\rho J_\rho = \sum_{m=0}^{u} L_{m\rho} \prod_{\lambda} Z^{P_{m\lambda}+1}_\lambda, \quad L_{m\rho} = 0 \) if \(P_{m\rho} = -1 \)

Invariant parameters

- \(\hat{K}_{\hat{a}} \equiv \prod_{m=1}^{u} \left[A_m A_0^{-1} \right] \hat{Q}_m \) complex structure
Deformations of reflexively plain GLSMs

Write $Z_\rho J_\rho = \sum_{m=0}^{u} L_{m\rho} \prod_{\lambda} Z^{P_{m\lambda}+1}_{\lambda}, \quad L_{m\rho} = 0 \text{ if } P_{m\rho} = -1$

Invariant parameters

- $\hat{K}_{\hat{a}} \equiv \prod_{m=1}^{u} \left[A_{m}A_{0}^{-1} \right] \hat{Q}_{m}^{\hat{a}}$ complex structure
- $K_{a} \equiv T_{a} \prod_{\rho=1}^{n} \left[L_{0\rho}A_{0}^{-1} \right] Q_{\rho}^{a}$ Kähler
Deformations of reflexively plain GLSMs

Write $Z_\rho J_\rho = \sum_{m=0}^{u} L_{m\rho} \prod_{\lambda} Z_\lambda^{P_{m\lambda}+1}$, $L_{m\rho} = 0$ if $P_{m\rho} = -1$

Invariant parameters

- $\hat{K}_{\hat{a}} \equiv \prod_{m=1}^{u} [A_mA_0^{-1}] \hat{Q}_m$ complex structure
- $K_a \equiv T_a \prod_{\rho=1}^{n} [L_{0\rho}A_0^{-1}] Q_\rho$ Kähler
- $B_{m\rho} \equiv \frac{A_0L_{m\rho}}{A_mL_{0\rho}} - 1$ for $m \neq 0$ bundle
Deformations of reflexively plain GLSMs

Write \(Z_\rho J_\rho = \sum_{m=0}^{u} L_{m\rho} \prod_\lambda Z_\lambda^{P_m \lambda + 1} \), \(L_{m\rho} = 0 \) if \(P_{m\rho} = -1 \)

Invariant parameters

- \(\hat{K}_\hat{a} \equiv \prod_{m=1}^{u} \left[A_m A_0^{-1} \right] \hat{Q}_m^\hat{a} \) complex structure
- \(K_a \equiv T_a \prod_{\rho=1}^{n} \left[L_{0\rho} A_0^{-1} \right] Q_\rho^a \) Kähler
- \(B_{m\rho} \equiv \frac{A_0 L_{m\rho}}{A_m L_{0\rho}} - 1 \) for \(m \neq 0 \) bundle

\(B_{m\rho} \) is rank \(d \) and satisfies \(B_{m\rho} = -1 \) whenever \(\Pi_{m\rho} = -1 \).
Deformations of reflexively plain GLSMs

Write \(Z_\rho J_\rho = \sum_{m=0}^{u} L_{m_\rho} \prod_{\lambda} Z_\lambda^{P_{m_\lambda}+1} \), \(L_{m_\rho} = 0 \) if \(P_{m_\rho} = -1 \)

Invariant parameters

- \(\hat{K}_{\hat{a}} \equiv \prod_{m=1}^{u} \left[A_m A_0^{-1} \right] \hat{Q}_m \hat{a} \) \(\hat{Q}_m \) complex structure
- \(K_a \equiv T_a \prod_{\rho=1}^{n} \left[L_{0_\rho} A_0^{-1} \right] Q_\rho^a \) Kähler
- \(B_{m_\rho} \equiv \frac{A_0 L_{m_\rho}}{A_m L_{0_\rho}} - 1 \) for \(m \neq 0 \) bundle

\(B_{m_\rho} \) is rank \(d \) and satisfies \(B_{m_\rho} = -1 \) whenever \(\prod_{m_\rho} = -1 \).

Remaining parameters fixed by SUSY constraint up to redefinitions
Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

K_a: $n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.

$\hat{K}_{\hat{a}}$: $u - d$ “complex structure” parameters. (2,2) locus: $\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}}$.

$B_{m\rho}$: bundle parameters. (2,2) locus: $B_{m\rho} = \Pi_{m\rho}$.

number of parameters matches $N(M)$.

The (0,2) mirror conjecture

$\Pi, Q; K_a, \hat{K}_{\hat{a}}, B_T \leftrightarrow \Pi^T, \hat{Q}; \hat{K}_{\hat{a}}, K_a, B_T$. (M, E) is mirror to (M^T, E^T).

A Test: A/2 and B/2 singular loci

A/2-twisted correlators diverge when an S_{α} develops a flat direction; B/2-twisted correlators diverge when Z_0 develops a flat direction; these singular loci are exchanged by the mirror map.
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

\[K^a : n - d \] "Kähler" parameters. (2,2) locus: \[K^a = T^a. \]

\[\hat{K}^\hat{a} : u - d \] "complex structure" parameters. (2,2) locus: \[\hat{K}^\hat{a} = \hat{T}^\hat{a}. \]

\[B_m^\rho : \text{bundle parameters.} \] (2,2) locus: \[B_m^\rho = \prod m^\rho. \]

The (0,2) mirror conjecture \[\Pi, \bar{Q}; K^a, \hat{K}^\hat{a}; B_T \] is mirror to \[\Pi, \bar{Q}; \hat{K}^\hat{a}, K^a; B_T \].

A Test: A/2 and B/2 singular loci

A/2-twisted correlators diverge when an \(S_\alpha \) develops a flat direction; B/2-twisted correlators diverge when \(Z_0 \) develops a flat direction; these singular loci are exchanged by the mirror map.
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.
- $\hat{K}_{\hat{a}} : u - d$ “complex structure” parameters. (2,2) locus: $\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}}$.
Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. $(2,2)$ locus: $K_a = T_a$.
- $\hat{K}_{\hat{a}} : u - d$ “complex structure” parameters. $(2,2)$ locus: $\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}}$.
- $B_{m\rho} :$ bundle parameters. $(2,2)$ locus: $B_{m\rho} = \Pi_{m\rho}$.
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.
- $\hat{K}_{\hat{a}} : u - d$ “complex structure” parameters. (2,2) locus: $\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}}$.
- $B_{m\rho} :$ bundle parameters. (2,2) locus: $B_{m\rho} = \Pi_{m\rho}$.
- number of parameters matches $N(M)$.
Algebraic coordinates

- $K_a : n - d$ "Kähler" parameters. (2,2) locus: $K_a = T_a$.
- $\hat{K}_\hat{a} : u - d$ "complex structure" parameters. (2,2) locus: $\hat{K}_\hat{a} = \hat{T}_\hat{a}$.
- $B_{m\rho} :$ bundle parameters. (2,2) locus: $B_{m\rho} = \Pi_{m\rho}$.
- number of parameters matches $N(M)$.

The (0,2) mirror conjecture

$$\Pi, Q; K_a, \hat{K}_\hat{a}, B \quad \text{(M, E)}$$
$$\Pi^T, \hat{Q}; \hat{K}_\hat{a}, K_a, B^T \quad \text{(M^o, E^o)}$$

A Test: A/2 and B/2 singular loci

A/2-twisted correlators diverge when an S_α develops a flat direction;
B/2-twisted correlators diverge when Z_0 develops a flat direction;
these singular loci are exchanged by the mirror map.
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.
- $\hat{K}_\hat{a} : u - d$ “complex structure” parameters. (2,2) locus: $\hat{K}_\hat{a} = \hat{T}_\hat{a}$.
- $B_{m\rho}$: bundle parameters. (2,2) locus: $B_{m\rho} = \Pi_{m\rho}$.
- number of parameters matches $N(M)$.

The (0,2) mirror conjecture

\[
\underbrace{\Pi, Q; K_a, \hat{K}_\hat{a}, B}_{(M, \mathcal{E})} \quad \text{is mirror to} \quad \underbrace{\Pi^T, \hat{Q}; \hat{K}_\hat{a}, K_a, B^T}_{(M^\circ, \mathcal{E}^\circ)}.
\]

A Test: A/2 and B/2 singular loci

- A/2-twisted correlators diverge when an S_α develops a flat direction;
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- \(K_a : n - d \) “Kähler” parameters. (2,2) locus: \(K_a = T_a \).
- \(\hat{K}_{\hat{a}} : u - d \) “complex structure” parameters. (2,2) locus: \(\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}} \).
- \(B_{m\rho} \) : bundle parameters. (2,2) locus: \(B_{m\rho} = \Pi_{m\rho} \).
- number of parameters matches \(N(M) \).

The (0,2) mirror conjecture

\[
\begin{align*}
\Pi, Q; K_a, \hat{K}_{\hat{a}}, B & \quad \text{is mirror to} \quad \Pi^T, \hat{Q}; \hat{K}_{\hat{a}}, K_a, B^T \\
(M, \mathcal{E}) & \quad \text{to} \quad (M^\circ, \mathcal{E}^\circ)
\end{align*}
\]

A Test: A/2 and B/2 singular loci

- A/2-twisted correlators diverge when an \(S_\alpha \) develops a flat direction;
- B/2-twisted correlators diverge when \(Z_0 \) develops a flat direction;
(0,2) Mirror symmetry for reflexively plain GLSMs

Algebraic coordinates

- $K_a : n - d$ “Kähler” parameters. (2,2) locus: $K_a = T_a$.
- $\hat{K}_{\hat{a}} : u - d$ “complex structure” parameters. (2,2) locus: $\hat{K}_{\hat{a}} = \hat{T}_{\hat{a}}$.
- $B_{m\rho} :$ bundle parameters. (2,2) locus: $B_{m\rho} = \Pi_{m\rho}$.
- number of parameters matches $N(M)$.

The (0,2) mirror conjecture

\[
\Pi, Q; K_a, \hat{K}_{\hat{a}}, B \quad \text{is mirror to} \quad \Pi^T, \hat{Q}; \hat{K}_{\hat{a}}, K_a, B^T \quad \text{on} \quad (M, \varepsilon) \quad \text{and} \quad (M^\circ, \varepsilon^\circ).
\]

A Test: A/2 and B/2 singular loci

- A/2-twisted correlators diverge when an S_{α} develops a flat direction;
- B/2-twisted correlators diverge when Z_0 develops a flat direction;
- these singular loci are exchanged by the mirror map.
Summary and Outlook

GLSM offers hands-on description of a subclass of bundle deformations. In the reflexively plain class of models, there is a simple mirror map. More generally, map yields isomorphism of subfamilies of (0,2) GLSMs with only some of the E-deformations turned on.

Questions

- Are $A/2$ and $B/2$ correlators exchanged by the mirror map?
- How to incorporate additional E-deformations?
- What is the fate of the non-GLSM bundle deformations?
- What is the space-time physics of the singularities?
- Can the ideas be generalized to (0,2) models without (2,2) locus?
Summary and Outlook

Results
Summary and Outlook

Results

- GLSM offers hands-on description of a subclass of bundle deformations.
Summary and Outlook

Results

- GLSM offers hands-on description of a subclass of bundle deformations.
- In the reflexively plain class of models, there is a simple mirror map.
Summary and Outlook

Results

- GLSM offers hands-on description of a subclass of bundle deformations.
- In the reflexively plain class of models, there is a simple mirror map.
- More generally, map yields isomorphism of subfamilies of (0,2) GLSMs with only some of the E-deformations turned on.
Summary and Outlook

Results

- GLSM offers hands-on description of a subclass of bundle deformations.
- In the reflexively plain class of models, there is a simple mirror map.
- More generally, map yields isomorphism of subfamilies of (0,2) GLSMs with only some of the E-deformations turned on.

Questions

- Are A/2 and B/2 correlators exchanged by the mirror map?
- How to incorporate additional E-deformations?
- What is the fate of the non-GLSM bundle deformations?
- What is the space-time physics of the singularities?
- Can the ideas be generalized to (0,2) models without (2,2) locus?